/* ******************************************************************************* * Copyright (C) 1996-2010, International Business Machines Corporation and * * others. All Rights Reserved. * ******************************************************************************* */ package com.ibm.icu.text; import java.text.ParsePosition; import com.ibm.icu.impl.UCharacterProperty; /** * A class representing a single rule in a RuleBasedNumberFormat. A rule * inserts its text into the result string and then passes control to its * substitutions, which do the same thing. */ final class NFRule { //----------------------------------------------------------------------- // constants //----------------------------------------------------------------------- /** * Special base value used to identify a negative-number rule */ public static final int NEGATIVE_NUMBER_RULE = -1; /** * Special base value used to identify an improper fraction (x.x) rule */ public static final int IMPROPER_FRACTION_RULE = -2; /** * Special base value used to identify a proper fraction (0.x) rule */ public static final int PROPER_FRACTION_RULE = -3; /** * Special base value used to identify a master rule */ public static final int MASTER_RULE = -4; //----------------------------------------------------------------------- // data members //----------------------------------------------------------------------- /** * The rule's base value */ private long baseValue; /** * The rule's radix (the radix to the power of the exponent equals * the rule's divisor) */ private int radix = 10; /** * The rule's exponent (the radx rased to the power of the exponsnt * equals the rule's divisor) */ private short exponent = 0; /** * The rule's rule text. When formatting a number, the rule's text * is inserted into the result string, and then the text from any * substitutions is inserted into the result string */ private String ruleText = null; /** * The rule's first substitution (the one with the lower offset * into the rule text) */ private NFSubstitution sub1 = null; /** * The rule's second substitution (the one with the higher offset * into the rule text) */ private NFSubstitution sub2 = null; /** * The RuleBasedNumberFormat that owns this rule */ private RuleBasedNumberFormat formatter = null; //----------------------------------------------------------------------- // construction //----------------------------------------------------------------------- /** * Creates one or more rules based on the description passed in. * @param description The description of the rule(s). * @param owner The rule set containing the new rule(s). * @param predecessor The rule that precedes the new one(s) in "owner"'s * rule list * @param ownersOwner The RuleBasedNumberFormat that owns the * rule set that owns the new rule(s) * @return An instance of NFRule, or an array of NFRules */ public static Object makeRules(String description, NFRuleSet owner, NFRule predecessor, RuleBasedNumberFormat ownersOwner) { // we know we're making at least one rule, so go ahead and // new it up and initialize its basevalue and divisor // (this also strips the rule descriptor, if any, off the // descripton string) NFRule rule1 = new NFRule(ownersOwner); description = rule1.parseRuleDescriptor(description); // check the description to see whether there's text enclosed // in brackets int brack1 = description.indexOf("["); int brack2 = description.indexOf("]"); // if the description doesn't contain a matched pair of brackets, // or if it's of a type that doesn't recognize bracketed text, // then leave the description alone, initialize the rule's // rule text and substitutions, and return that rule if (brack1 == -1 || brack2 == -1 || brack1 > brack2 || rule1.getBaseValue() == PROPER_FRACTION_RULE || rule1.getBaseValue() == NEGATIVE_NUMBER_RULE) { rule1.ruleText = description; rule1.extractSubstitutions(owner, predecessor, ownersOwner); return rule1; } else { // if the description does contain a matched pair of brackets, // then it's really shorthand for two rules (with one exception) NFRule rule2 = null; StringBuilder sbuf = new StringBuilder(); // we'll actually only split the rule into two rules if its // base value is an even multiple of its divisor (or it's one // of the special rules) if ((rule1.baseValue > 0 && rule1.baseValue % (Math.pow(rule1.radix, rule1.exponent)) == 0) || rule1.baseValue == IMPROPER_FRACTION_RULE || rule1.baseValue == MASTER_RULE) { // if it passes that test, new up the second rule. If the // rule set both rules will belong to is a fraction rule // set, they both have the same base value; otherwise, // increment the original rule's base value ("rule1" actually // goes SECOND in the rule set's rule list) rule2 = new NFRule(ownersOwner); if (rule1.baseValue >= 0) { rule2.baseValue = rule1.baseValue; if (!owner.isFractionSet()) { ++rule1.baseValue; } } // if the description began with "x.x" and contains bracketed // text, it describes both the improper fraction rule and // the proper fraction rule else if (rule1.baseValue == IMPROPER_FRACTION_RULE) { rule2.baseValue = PROPER_FRACTION_RULE; } // if the description began with "x.0" and contains bracketed // text, it describes both the master rule and the // improper fraction rule else if (rule1.baseValue == MASTER_RULE) { rule2.baseValue = rule1.baseValue; rule1.baseValue = IMPROPER_FRACTION_RULE; } // both rules have the same radix and exponent (i.e., the // same divisor) rule2.radix = rule1.radix; rule2.exponent = rule1.exponent; // rule2's rule text omits the stuff in brackets: initalize // its rule text and substitutions accordingly sbuf.append(description.substring(0, brack1)); if (brack2 + 1 < description.length()) { sbuf.append(description.substring(brack2 + 1)); } rule2.ruleText = sbuf.toString(); rule2.extractSubstitutions(owner, predecessor, ownersOwner); } // rule1's text includes the text in the brackets but omits // the brackets themselves: initialize _its_ rule text and // substitutions accordingly sbuf.setLength(0); sbuf.append(description.substring(0, brack1)); sbuf.append(description.substring(brack1 + 1, brack2)); if (brack2 + 1 < description.length()) { sbuf.append(description.substring(brack2 + 1)); } rule1.ruleText = sbuf.toString(); rule1.extractSubstitutions(owner, predecessor, ownersOwner); // if we only have one rule, return it; if we have two, return // a two-element array containing them (notice that rule2 goes // BEFORE rule1 in the list: in all cases, rule2 OMITS the // material in the brackets and rule1 INCLUDES the material // in the brackets) if (rule2 == null) { return rule1; } else { return new NFRule[] { rule2, rule1 }; } } } /** * Nominal constructor for NFRule. Most of the work of constructing * an NFRule is actually performed by makeRules(). */ public NFRule(RuleBasedNumberFormat formatter) { this.formatter = formatter; } /** * This function parses the rule's rule descriptor (i.e., the base * value and/or other tokens that precede the rule's rule text * in the description) and sets the rule's base value, radix, and * exponent according to the descriptor. (If the description doesn't * include a rule descriptor, then this function sets everything to * default values and the rule set sets the rule's real base value). * @param description The rule's description * @return If "description" included a rule descriptor, this is * "description" with the descriptor and any trailing whitespace * stripped off. Otherwise; it's "descriptor" unchangd. */ private String parseRuleDescriptor(String description) { String descriptor; // the description consists of a rule descriptor and a rule body, // separated by a colon. The rule descriptor is optional. If // it's omitted, just set the base value to 0. int p = description.indexOf(":"); if (p == -1) { setBaseValue(0); } else { // copy the descriptor out into its own string and strip it, // along with any trailing whitespace, out of the original // description descriptor = description.substring(0, p); ++p; while (p < description.length() && UCharacterProperty.isRuleWhiteSpace(description.charAt(p))) ++p; description = description.substring(p); // check first to see if the rule descriptor matches the token // for one of the special rules. If it does, set the base // value to the correct identfier value if (descriptor.equals("-x")) { setBaseValue(NEGATIVE_NUMBER_RULE); } else if (descriptor.equals("x.x")) { setBaseValue(IMPROPER_FRACTION_RULE); } else if (descriptor.equals("0.x")) { setBaseValue(PROPER_FRACTION_RULE); } else if (descriptor.equals("x.0")) { setBaseValue(MASTER_RULE); } // if the rule descriptor begins with a digit, it's a descriptor // for a normal rule else if (descriptor.charAt(0) >= '0' && descriptor.charAt(0) <= '9') { StringBuilder tempValue = new StringBuilder(); p = 0; char c = ' '; // begin parsing the descriptor: copy digits // into "tempValue", skip periods, commas, and spaces, // stop on a slash or > sign (or at the end of the string), // and throw an exception on any other character while (p < descriptor.length()) { c = descriptor.charAt(p); if (c >= '0' && c <= '9') { tempValue.append(c); } else if (c == '/' || c == '>') { break; } else if (UCharacterProperty.isRuleWhiteSpace(c) || c == ',' || c == '.') { } else { throw new IllegalArgumentException("Illegal character in rule descriptor"); } ++p; } // tempValue now contains a string representation of the // rule's base value with the punctuation stripped out. // Set the rule's base value accordingly setBaseValue(Long.parseLong(tempValue.toString())); // if we stopped the previous loop on a slash, we're // now parsing the rule's radix. Again, accumulate digits // in tempValue, skip punctuation, stop on a > mark, and // throw an exception on anything else if (c == '/') { tempValue.setLength(0); ++p; while (p < descriptor.length()) { c = descriptor.charAt(p); if (c >= '0' && c <= '9') { tempValue.append(c); } else if (c == '>') { break; } else if (UCharacterProperty.isRuleWhiteSpace(c) || c == ',' || c == '.') { } else { throw new IllegalArgumentException("Illegal character is rule descriptor"); } ++p; } // tempValue now contain's the rule's radix. Set it // accordingly, and recalculate the rule's exponent radix = Integer.parseInt(tempValue.toString()); if (radix == 0) { throw new IllegalArgumentException("Rule can't have radix of 0"); } exponent = expectedExponent(); } // if we stopped the previous loop on a > sign, then continue // for as long as we still see > signs. For each one, // decrement the exponent (unless the exponent is already 0). // If we see another character before reaching the end of // the descriptor, that's also a syntax error. if (c == '>') { while (p < descriptor.length()) { c = descriptor.charAt(p); if (c == '>' && exponent > 0) { --exponent; } else { throw new IllegalArgumentException("Illegal character in rule descriptor"); } ++p; } } } } // finally, if the rule body begins with an apostrophe, strip it off // (this is generally used to put whitespace at the beginning of // a rule's rule text) if (description.length() > 0 && description.charAt(0) == '\'') { description = description.substring(1); } // return the description with all the stuff we've just waded through // stripped off the front. It now contains just the rule body. return description; } /** * Searches the rule's rule text for the substitution tokens, * creates the substitutions, and removes the substitution tokens * from the rule's rule text. * @param owner The rule set containing this rule * @param predecessor The rule preseding this one in "owners" rule list * @param ownersOwner The RuleBasedFormat that owns this rule */ private void extractSubstitutions(NFRuleSet owner, NFRule predecessor, RuleBasedNumberFormat ownersOwner) { sub1 = extractSubstitution(owner, predecessor, ownersOwner); sub2 = extractSubstitution(owner, predecessor, ownersOwner); } /** * Searches the rule's rule text for the first substitution token, * creates a substitution based on it, and removes the token from * the rule's rule text. * @param owner The rule set containing this rule * @param predecessor The rule preceding this one in the rule set's * rule list * @param ownersOwner The RuleBasedNumberFormat that owns this rule * @return The newly-created substitution. This is never null; if * the rule text doesn't contain any substitution tokens, this will * be a NullSubstitution. */ private NFSubstitution extractSubstitution(NFRuleSet owner, NFRule predecessor, RuleBasedNumberFormat ownersOwner) { NFSubstitution result = null; int subStart; int subEnd; // search the rule's rule text for the first two characters of // a substitution token subStart = indexOfAny(new String[] { "<<", "<%", "<#", "<0", ">>", ">%", ">#", ">0", "=%", "=#", "=0" } ); // if we didn't find one, create a null substitution positioned // at the end of the rule text if (subStart == -1) { return NFSubstitution.makeSubstitution(ruleText.length(), this, predecessor, owner, ownersOwner, ""); } // special-case the ">>>" token, since searching for the > at the // end will actually find the > in the middle if (ruleText.substring(subStart).startsWith(">>>")) { subEnd = subStart + 2; // otherwise the substitution token ends with the same character // it began with } else { char c = ruleText.charAt(subStart); subEnd = ruleText.indexOf(c, subStart + 1); // special case for '<%foo<<' if (c == '<' && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) { // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle // occurs because of the juxtaposition of two different rules. The check for '<' is a hack // to get around this. Having the duplicate at the front would cause problems with // rules like "<<%" to format, say, percents... ++subEnd; } } // if we don't find the end of the token (i.e., if we're on a single, // unmatched token character), create a null substitution positioned // at the end of the rule if (subEnd == -1) { return NFSubstitution.makeSubstitution(ruleText.length(), this, predecessor, owner, ownersOwner, ""); } // if we get here, we have a real substitution token (or at least // some text bounded by substitution token characters). Use // makeSubstitution() to create the right kind of substitution result = NFSubstitution.makeSubstitution(subStart, this, predecessor, owner, ownersOwner, ruleText.substring(subStart, subEnd + 1)); // remove the substitution from the rule text ruleText = ruleText.substring(0, subStart) + ruleText.substring(subEnd + 1); return result; } /** * Sets the rule's base value, and causes the radix and exponent * to be recalculated. This is used during construction when we * don't know the rule's base value until after it's been * constructed. It should not be used at any other time. * @param newBaseValue The new base value for the rule. */ public final void setBaseValue(long newBaseValue) { // set the base value baseValue = newBaseValue; // if this isn't a special rule, recalculate the radix and exponent // (the radix always defaults to 10; if it's supposed to be something // else, it's cleaned up by the caller and the exponent is // recalculated again-- the only function that does this is // NFRule.parseRuleDescriptor() ) if (baseValue >= 1) { radix = 10; exponent = expectedExponent(); // this function gets called on a fully-constructed rule whose // description didn't specify a base value. This means it // has substitutions, and some substitutions hold on to copies // of the rule's divisor. Fix their copies of the divisor. if (sub1 != null) { sub1.setDivisor(radix, exponent); } if (sub2 != null) { sub2.setDivisor(radix, exponent); } // if this is a special rule, its radix and exponent are basically // ignored. Set them to "safe" default values } else { radix = 10; exponent = 0; } } /** * This calculates the rule's exponent based on its radix and base * value. This will be the highest power the radix can be raised to * and still produce a result less than or equal to the base value. */ private short expectedExponent() { // since the log of 0, or the log base 0 of something, causes an // error, declare the exponent in these cases to be 0 (we also // deal with the special-rule identifiers here) if (radix == 0 || baseValue < 1) { return 0; } // we get rounding error in some cases-- for example, log 1000 / log 10 // gives us 1.9999999996 instead of 2. The extra logic here is to take // that into account short tempResult = (short)(Math.log(baseValue) / Math.log(radix)); if (Math.pow(radix, tempResult + 1) <= baseValue) { return (short)(tempResult + 1); } else { return tempResult; } } /** * Searches the rule's rule text for any of the specified strings. * @param strings An array of strings to search the rule's rule * text for * @return The index of the first match in the rule's rule text * (i.e., the first substring in the rule's rule text that matches * _any_ of the strings in "strings"). If none of the strings in * "strings" is found in the rule's rule text, returns -1. */ private int indexOfAny(String[] strings) { int pos; int result = -1; for (int i = 0; i < strings.length; i++) { pos = ruleText.indexOf(strings[i]); if (pos != -1 && (result == -1 || pos < result)) { result = pos; } } return result; } //----------------------------------------------------------------------- // boilerplate //----------------------------------------------------------------------- /** * Tests two rules for equality. * @param that The rule to compare this one against * @return True if the two rules are functionally equivalent */ public boolean equals(Object that) { if (that instanceof NFRule) { NFRule that2 = (NFRule)that; return baseValue == that2.baseValue && radix == that2.radix && exponent == that2.exponent && ruleText.equals(that2.ruleText) && sub1.equals(that2.sub1) && sub2.equals(that2.sub2); } return false; } /** * Returns a textual representation of the rule. This won't * necessarily be the same as the description that this rule * was created with, but it will produce the same result. * @return A textual description of the rule */ public String toString() { StringBuilder result = new StringBuilder(); // start with the rule descriptor. Special-case the special rules if (baseValue == NEGATIVE_NUMBER_RULE) { result.append("-x: "); } else if (baseValue == IMPROPER_FRACTION_RULE) { result.append("x.x: "); } else if (baseValue == PROPER_FRACTION_RULE) { result.append("0.x: "); } else if (baseValue == MASTER_RULE) { result.append("x.0: "); } // for a normal rule, write out its base value, and if the radix is // something other than 10, write out the radix (with the preceding // slash, of course). Then calculate the expected exponent and if // if isn't the same as the actual exponent, write an appropriate // number of > signs. Finally, terminate the whole thing with // a colon. else { result.append(String.valueOf(baseValue)); if (radix != 10) { result.append('/'); result.append(String.valueOf(radix)); } int numCarets = expectedExponent() - exponent; for (int i = 0; i < numCarets; i++) result.append('>'); result.append(": "); } // if the rule text begins with a space, write an apostrophe // (whitespace after the rule descriptor is ignored; the // apostrophe is used to make the whitespace significant) if (ruleText.startsWith(" ") && (sub1 == null || sub1.getPos() != 0)) { result.append("\'"); } // now, write the rule's rule text, inserting appropriate // substitution tokens in the appropriate places StringBuilder ruleTextCopy = new StringBuilder(ruleText); ruleTextCopy.insert(sub2.getPos(), sub2.toString()); ruleTextCopy.insert(sub1.getPos(), sub1.toString()); result.append(ruleTextCopy.toString()); // and finally, top the whole thing off with a semicolon and // return the result result.append(';'); return result.toString(); } //----------------------------------------------------------------------- // simple accessors //----------------------------------------------------------------------- /** * Returns the rule's base value * @return The rule's base value */ public final long getBaseValue() { return baseValue; } /** * Returns the rule's divisor (the value that cotrols the behavior * of its substitutions) * @return The rule's divisor */ public double getDivisor() { return Math.pow(radix, exponent); } //----------------------------------------------------------------------- // formatting //----------------------------------------------------------------------- /** * Formats the number, and inserts the resulting text into * toInsertInto. * @param number The number being formatted * @param toInsertInto The string where the resultant text should * be inserted * @param pos The position in toInsertInto where the resultant text * should be inserted */ public void doFormat(long number, StringBuffer toInsertInto, int pos) { // first, insert the rule's rule text into toInsertInto at the // specified position, then insert the results of the substitutions // into the right places in toInsertInto (notice we do the // substitutions in reverse order so that the offsets don't get // messed up) toInsertInto.insert(pos, ruleText); sub2.doSubstitution(number, toInsertInto, pos); sub1.doSubstitution(number, toInsertInto, pos); } /** * Formats the number, and inserts the resulting text into * toInsertInto. * @param number The number being formatted * @param toInsertInto The string where the resultant text should * be inserted * @param pos The position in toInsertInto where the resultant text * should be inserted */ public void doFormat(double number, StringBuffer toInsertInto, int pos) { // first, insert the rule's rule text into toInsertInto at the // specified position, then insert the results of the substitutions // into the right places in toInsertInto // [again, we have two copies of this routine that do the same thing // so that we don't sacrifice precision in a long by casting it // to a double] toInsertInto.insert(pos, ruleText); sub2.doSubstitution(number, toInsertInto, pos); sub1.doSubstitution(number, toInsertInto, pos); } /** * Used by the owning rule set to determine whether to invoke the * rollback rule (i.e., whether this rule or the one that precedes * it in the rule set's list should be used to format the number) * @param number The number being formatted * @return True if the rule set should use the rule that precedes * this one in its list; false if it should use this rule */ public boolean shouldRollBack(double number) { // we roll back if the rule contains a modulus substitution, // the number being formatted is an even multiple of the rule's // divisor, and the rule's base value is NOT an even multiple // of its divisor // In other words, if the original description had // 100: << hundred[ >>]; // that expands into // 100: << hundred; // 101: << hundred >>; // internally. But when we're formatting 200, if we use the rule // at 101, which would normally apply, we get "two hundred zero". // To prevent this, we roll back and use the rule at 100 instead. // This is the logic that makes this happen: the rule at 101 has // a modulus substitution, its base value isn't an even multiple // of 100, and the value we're trying to format _is_ an even // multiple of 100. This is called the "rollback rule." if ((sub1.isModulusSubstitution()) || (sub2.isModulusSubstitution())) { return (number % Math.pow(radix, exponent)) == 0 && (baseValue % Math.pow(radix, exponent)) != 0; } return false; } //----------------------------------------------------------------------- // parsing //----------------------------------------------------------------------- /** * Attempts to parse the string with this rule. * @param text The string being parsed * @param parsePosition On entry, the value is ignored and assumed to * be 0. On exit, this has been updated with the position of the first * character not consumed by matching the text against this rule * (if this rule doesn't match the text at all, the parse position * if left unchanged (presumably at 0) and the function returns * new Long(0)). * @param isFractionRule True if this rule is contained within a * fraction rule set. This is only used if the rule has no * substitutions. * @return If this rule matched the text, this is the rule's base value * combined appropriately with the results of parsing the substitutions. * If nothing matched, this is new Long(0) and the parse position is * left unchanged. The result will be an instance of Long if the * result is an integer and Double otherwise. The result is never null. */ public Number doParse(String text, ParsePosition parsePosition, boolean isFractionRule, double upperBound) { // internally we operate on a copy of the string being parsed // (because we're going to change it) and use our own ParsePosition ParsePosition pp = new ParsePosition(0); // check to see whether the text before the first substitution // matches the text at the beginning of the string being // parsed. If it does, strip that off the front of workText; // otherwise, dump out with a mismatch String workText = stripPrefix(text, ruleText.substring(0, sub1.getPos()), pp); int prefixLength = text.length() - workText.length(); if (pp.getIndex() == 0 && sub1.getPos() != 0) { // commented out because ParsePosition doesn't have error index in 1.1.x // parsePosition.setErrorIndex(pp.getErrorIndex()); return new Long(0); } // this is the fun part. The basic guts of the rule-matching // logic is matchToDelimiter(), which is called twice. The first // time it searches the input string for the rule text BETWEEN // the substitutions and tries to match the intervening text // in the input string with the first substitution. If that // succeeds, it then calls it again, this time to look for the // rule text after the second substitution and to match the // intervening input text against the second substitution. // // For example, say we have a rule that looks like this: // first << middle >> last; // and input text that looks like this: // first one middle two last // First we use stripPrefix() to match "first " in both places and // strip it off the front, leaving // one middle two last // Then we use matchToDelimiter() to match " middle " and try to // match "one" against a substitution. If it's successful, we now // have // two last // We use matchToDelimiter() a second time to match " last" and // try to match "two" against a substitution. If "two" matches // the substitution, we have a successful parse. // // Since it's possible in many cases to find multiple instances // of each of these pieces of rule text in the input string, // we need to try all the possible combinations of these // locations. This prevents us from prematurely declaring a mismatch, // and makes sure we match as much input text as we can. int highWaterMark = 0; double result = 0; int start = 0; double tempBaseValue = Math.max(0, baseValue); do { // our partial parse result starts out as this rule's base // value. If it finds a successful match, matchToDelimiter() // will compose this in some way with what it gets back from // the substitution, giving us a new partial parse result pp.setIndex(0); double partialResult = matchToDelimiter(workText, start, tempBaseValue, ruleText.substring(sub1.getPos(), sub2.getPos()), pp, sub1, upperBound).doubleValue(); // if we got a successful match (or were trying to match a // null substitution), pp is now pointing at the first unmatched // character. Take note of that, and try matchToDelimiter() // on the input text again if (pp.getIndex() != 0 || sub1.isNullSubstitution()) { start = pp.getIndex(); String workText2 = workText.substring(pp.getIndex()); ParsePosition pp2 = new ParsePosition(0); // the second matchToDelimiter() will compose our previous // partial result with whatever it gets back from its // substitution if there's a successful match, giving us // a real result partialResult = matchToDelimiter(workText2, 0, partialResult, ruleText.substring(sub2.getPos()), pp2, sub2, upperBound).doubleValue(); // if we got a successful match on this second // matchToDelimiter() call, update the high-water mark // and result (if necessary) if (pp2.getIndex() != 0 || sub2.isNullSubstitution()) { if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); result = partialResult; } } // commented out because ParsePosition doesn't have error index in 1.1.x // else { // int temp = pp2.getErrorIndex() + sub1.getPos() + pp.getIndex(); // if (temp> parsePosition.getErrorIndex()) { // parsePosition.setErrorIndex(temp); // } // } } // commented out because ParsePosition doesn't have error index in 1.1.x // else { // int temp = sub1.getPos() + pp.getErrorIndex(); // if (temp > parsePosition.getErrorIndex()) { // parsePosition.setErrorIndex(temp); // } // } // keep trying to match things until the outer matchToDelimiter() // call fails to make a match (each time, it picks up where it // left off the previous time) } while (sub1.getPos() != sub2.getPos() && pp.getIndex() > 0 && pp.getIndex() < workText.length() && pp.getIndex() != start); // update the caller's ParsePosition with our high-water mark // (i.e., it now points at the first character this function // didn't match-- the ParsePosition is therefore unchanged if // we didn't match anything) parsePosition.setIndex(highWaterMark); // commented out because ParsePosition doesn't have error index in 1.1.x // if (highWaterMark > 0) { // parsePosition.setErrorIndex(0); // } // this is a hack for one unusual condition: Normally, whether this // rule belong to a fraction rule set or not is handled by its // substitutions. But if that rule HAS NO substitutions, then // we have to account for it here. By definition, if the matching // rule in a fraction rule set has no substitutions, its numerator // is 1, and so the result is the reciprocal of its base value. if (isFractionRule && highWaterMark > 0 && sub1.isNullSubstitution()) { result = 1 / result; } // return the result as a Long if possible, or as a Double if (result == (long)result) { return new Long((long)result); } else { return new Double(result); } } /** * This function is used by parse() to match the text being parsed * against a possible prefix string. This function * matches characters from the beginning of the string being parsed * to characters from the prospective prefix. If they match, pp is * updated to the first character not matched, and the result is * the unparsed part of the string. If they don't match, the whole * string is returned, and pp is left unchanged. * @param text The string being parsed * @param prefix The text to match against * @param pp On entry, ignored and assumed to be 0. On exit, points * to the first unmatched character (assuming the whole prefix matched), * or is unchanged (if the whole prefix didn't match). * @return If things match, this is the unparsed part of "text"; * if they didn't match, this is "text". */ private String stripPrefix(String text, String prefix, ParsePosition pp) { // if the prefix text is empty, dump out without doing anything if (prefix.length() == 0) { return text; } else { // otherwise, use prefixLength() to match the beginning of // "text" against "prefix". This function returns the // number of characters from "text" that matched (or 0 if // we didn't match the whole prefix) int pfl = prefixLength(text, prefix); if (pfl != 0) { // if we got a successful match, update the parse position // and strip the prefix off of "text" pp.setIndex(pp.getIndex() + pfl); return text.substring(pfl); // if we didn't get a successful match, leave everything alone } else { return text; } } } /** * Used by parse() to match a substitution and any following text. * "text" is searched for instances of "delimiter". For each instance * of delimiter, the intervening text is tested to see whether it * matches the substitution. The longest match wins. * @param text The string being parsed * @param startPos The position in "text" where we should start looking * for "delimiter". * @param baseVal A partial parse result (often the rule's base value), * which is combined with the result from matching the substitution * @param delimiter The string to search "text" for. * @param pp Ignored and presumed to be 0 on entry. If there's a match, * on exit this will point to the first unmatched character. * @param sub If we find "delimiter" in "text", this substitution is used * to match the text between the beginning of the string and the * position of "delimiter." (If "delimiter" is the empty string, then * this function just matches against this substitution and updates * everything accordingly.) * @param upperBound When matching the substitution, it will only * consider rules with base values lower than this value. * @return If there's a match, this is the result of composing * baseValue with the result of matching the substitution. Otherwise, * this is new Long(0). It's never null. If the result is an integer, * this will be an instance of Long; otherwise, it's an instance of * Double. */ private Number matchToDelimiter(String text, int startPos, double baseVal, String delimiter, ParsePosition pp, NFSubstitution sub, double upperBound) { // if "delimiter" contains real (i.e., non-ignorable) text, search // it for "delimiter" beginning at "start". If that succeeds, then // use "sub"'s doParse() method to match the text before the // instance of "delimiter" we just found. if (!allIgnorable(delimiter)) { ParsePosition tempPP = new ParsePosition(0); Number tempResult; // use findText() to search for "delimiter". It returns a two- // element array: element 0 is the position of the match, and // element 1 is the number of characters that matched // "delimiter". int[] temp = findText(text, delimiter, startPos); int dPos = temp[0]; int dLen = temp[1]; // if findText() succeeded, isolate the text preceding the // match, and use "sub" to match that text while (dPos >= 0) { String subText = text.substring(0, dPos); if (subText.length() > 0) { tempResult = sub.doParse(subText, tempPP, baseVal, upperBound, formatter.lenientParseEnabled()); // if the substitution could match all the text up to // where we found "delimiter", then this function has // a successful match. Bump the caller's parse position // to point to the first character after the text // that matches "delimiter", and return the result // we got from parsing the substitution. if (tempPP.getIndex() == dPos) { pp.setIndex(dPos + dLen); return tempResult; } // commented out because ParsePosition doesn't have error index in 1.1.x // else { // if (tempPP.getErrorIndex() > 0) { // pp.setErrorIndex(tempPP.getErrorIndex()); // } else { // pp.setErrorIndex(tempPP.getIndex()); // } // } } // if we didn't match the substitution, search for another // copy of "delimiter" in "text" and repeat the loop if // we find it tempPP.setIndex(0); temp = findText(text, delimiter, dPos + dLen); dPos = temp[0]; dLen = temp[1]; } // if we make it here, this was an unsuccessful match, and we // leave pp unchanged and return 0 pp.setIndex(0); return new Long(0); // if "delimiter" is empty, or consists only of ignorable characters // (i.e., is semantically empty), thwe we obviously can't search // for "delimiter". Instead, just use "sub" to parse as much of // "text" as possible. } else { ParsePosition tempPP = new ParsePosition(0); Number result = new Long(0); Number tempResult; // try to match the whole string against the substitution tempResult = sub.doParse(text, tempPP, baseVal, upperBound, formatter.lenientParseEnabled()); if (tempPP.getIndex() != 0 || sub.isNullSubstitution()) { // if there's a successful match (or it's a null // substitution), update pp to point to the first // character we didn't match, and pass the result from // sub.doParse() on through to the caller pp.setIndex(tempPP.getIndex()); if (tempResult != null) { result = tempResult; } } // commented out because ParsePosition doesn't have error index in 1.1.x // else { // pp.setErrorIndex(tempPP.getErrorIndex()); // } // and if we get to here, then nothing matched, so we return // 0 and leave pp alone return result; } } /** * Used by stripPrefix() to match characters. If lenient parse mode * is off, this just calls startsWith(). If lenient parse mode is on, * this function uses CollationElementIterators to match characters in * the strings (only primary-order differences are significant in * determining whether there's a match). * @param str The string being tested * @param prefix The text we're hoping to see at the beginning * of "str" * @return If "prefix" is found at the beginning of "str", this * is the number of characters in "str" that were matched (this * isn't necessarily the same as the length of "prefix" when matching * text with a collator). If there's no match, this is 0. */ private int prefixLength(String str, String prefix) { // if we're looking for an empty prefix, it obviously matches // zero characters. Just go ahead and return 0. if (prefix.length() == 0) { return 0; } RbnfLenientScanner scanner = formatter.getLenientScanner(); if (scanner != null) { return scanner.prefixLength(str, prefix); } // go through all this grief if we're in lenient-parse mode // if (formatter.lenientParseEnabled()) { // // get the formatter's collator and use it to create two // // collation element iterators, one over the target string // // and another over the prefix (right now, we'll throw an // // exception if the collator we get back from the formatter // // isn't a RuleBasedCollator, because RuleBasedCollator defines // // the CollationElementIteratoer protocol. Hopefully, this // // will change someday.) // // // // Previous code was matching "fifty-" against " fifty" and leaving // // the number " fifty-7" to parse as 43 (50 - 7). // // Also it seems that if we consume the entire prefix, that's ok even // // if we've consumed the entire string, so I switched the logic to // // reflect this. // RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator(); // CollationElementIterator strIter = collator.getCollationElementIterator(str); // CollationElementIterator prefixIter = collator.getCollationElementIterator(prefix); // // match collation elements between the strings // int oStr = strIter.next(); // int oPrefix = prefixIter.next(); // while (oPrefix != CollationElementIterator.NULLORDER) { // // skip over ignorable characters in the target string // while (CollationElementIterator.primaryOrder(oStr) == 0 && oStr != // CollationElementIterator.NULLORDER) { // oStr = strIter.next(); // } // // skip over ignorable characters in the prefix // while (CollationElementIterator.primaryOrder(oPrefix) == 0 && oPrefix != // CollationElementIterator.NULLORDER) { // oPrefix = prefixIter.next(); // } // // if skipping over ignorables brought to the end of // // the prefix, we DID match: drop out of the loop // if (oPrefix == CollationElementIterator.NULLORDER) { // break; // } // // if skipping over ignorables brought us to the end // // of the target string, we didn't match and return 0 // if (oStr == CollationElementIterator.NULLORDER) { // return 0; // } // // match collation elements from the two strings // // (considering only primary differences). If we // // get a mismatch, dump out and return 0 // if (CollationElementIterator.primaryOrder(oStr) != CollationElementIterator. // primaryOrder(oPrefix)) { // return 0; // } // // otherwise, advance to the next character in each string // // and loop (we drop out of the loop when we exhaust // // collation elements in the prefix) // oStr = strIter.next(); // oPrefix = prefixIter.next(); // } // // we are not compatible with jdk 1.1 any longer // int result = strIter.getOffset(); // if (oStr != CollationElementIterator.NULLORDER) { // --result; // } // return result; /* //---------------------------------------------------------------- // JDK 1.2-specific API call // return strIter.getOffset(); //---------------------------------------------------------------- // JDK 1.1 HACK (take out for 1.2-specific code) // if we make it to here, we have a successful match. Now we // have to find out HOW MANY characters from the target string // matched the prefix (there isn't necessarily a one-to-one // mapping between collation elements and characters). // In JDK 1.2, there's a simple getOffset() call we can use. // In JDK 1.1, on the other hand, we have to go through some // ugly contortions. First, use the collator to compare the // same number of characters from the prefix and target string. // If they're equal, we're done. collator.setStrength(Collator.PRIMARY); if (str.length() >= prefix.length() && collator.equals(str.substring(0, prefix.length()), prefix)) { return prefix.length(); } // if they're not equal, then we have to compare successively // larger and larger substrings of the target string until we // get to one that matches the prefix. At that point, we know // how many characters matched the prefix, and we can return. int p = 1; while (p <= str.length()) { if (collator.equals(str.substring(0, p), prefix)) { return p; } else { ++p; } } // SHOULKD NEVER GET HERE!!! return 0; //---------------------------------------------------------------- */ // If lenient parsing is turned off, forget all that crap above. // Just use String.startsWith() and be done with it. // } else { if (str.startsWith(prefix)) { return prefix.length(); } else { return 0; } // } } /* * Searches a string for another string. If lenient parsing is off, * this just calls indexOf(). If lenient parsing is on, this function * uses CollationElementIterator to match characters, and only * primary-order differences are significant in determining whether * there's a match. * @param str The string to search * @param key The string to search "str" for * @return A two-element array of ints. Element 0 is the position * of the match, or -1 if there was no match. Element 1 is the * number of characters in "str" that matched (which isn't necessarily * the same as the length of "key") */ /* private int[] findText(String str, String key) { return findText(str, key, 0); }*/ /** * Searches a string for another string. If lenient parsing is off, * this just calls indexOf(). If lenient parsing is on, this function * uses CollationElementIterator to match characters, and only * primary-order differences are significant in determining whether * there's a match. * @param str The string to search * @param key The string to search "str" for * @param startingAt The index into "str" where the search is to * begin * @return A two-element array of ints. Element 0 is the position * of the match, or -1 if there was no match. Element 1 is the * number of characters in "str" that matched (which isn't necessarily * the same as the length of "key") */ private int[] findText(String str, String key, int startingAt) { // if lenient parsing is turned off, this is easy: just call // String.indexOf() and we're done RbnfLenientScanner scanner = formatter.getLenientScanner(); // if (!formatter.lenientParseEnabled()) { if (scanner == null) { return new int[] { str.indexOf(key, startingAt), key.length() }; // but if lenient parsing is turned ON, we've got some work // ahead of us } else { return scanner.findText(str, key, startingAt); // //---------------------------------------------------------------- // // JDK 1.1 HACK (take out of 1.2-specific code) // // in JDK 1.2, CollationElementIterator provides us with an // // API to map between character offsets and collation elements // // and we can do this by marching through the string comparing // // collation elements. We can't do that in JDK 1.1. Insted, // // we have to go through this horrible slow mess: // int p = startingAt; // int keyLen = 0; // // basically just isolate smaller and smaller substrings of // // the target string (each running to the end of the string, // // and with the first one running from startingAt to the end) // // and then use prefixLength() to see if the search key is at // // the beginning of each substring. This is excruciatingly // // slow, but it will locate the key and tell use how long the // // matching text was. // while (p < str.length() && keyLen == 0) { // keyLen = prefixLength(str.substring(p), key); // if (keyLen != 0) { // return new int[] { p, keyLen }; // } // ++p; // } // // if we make it to here, we didn't find it. Return -1 for the // // location. The length should be ignored, but set it to 0, // // which should be "safe" // return new int[] { -1, 0 }; //---------------------------------------------------------------- // JDK 1.2 version of this routine //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator(); // //CollationElementIterator strIter = collator.getCollationElementIterator(str); //CollationElementIterator keyIter = collator.getCollationElementIterator(key); // //int keyStart = -1; // //str.setOffset(startingAt); // //int oStr = strIter.next(); //int oKey = keyIter.next(); //while (oKey != CollationElementIterator.NULLORDER) { // while (oStr != CollationElementIterator.NULLORDER && // CollationElementIterator.primaryOrder(oStr) == 0) // oStr = strIter.next(); // // while (oKey != CollationElementIterator.NULLORDER && // CollationElementIterator.primaryOrder(oKey) == 0) // oKey = keyIter.next(); // // if (oStr == CollationElementIterator.NULLORDER) { // return new int[] { -1, 0 }; // } // // if (oKey == CollationElementIterator.NULLORDER) { // break; // } // // if (CollationElementIterator.primaryOrder(oStr) == // CollationElementIterator.primaryOrder(oKey)) { // keyStart = strIter.getOffset(); // oStr = strIter.next(); // oKey = keyIter.next(); // } else { // if (keyStart != -1) { // keyStart = -1; // keyIter.reset(); // } else { // oStr = strIter.next(); // } // } //} // //if (oKey == CollationElementIterator.NULLORDER) { // return new int[] { keyStart, strIter.getOffset() - keyStart }; //} else { // return new int[] { -1, 0 }; //} } } /** * Checks to see whether a string consists entirely of ignorable * characters. * @param str The string to test. * @return true if the string is empty of consists entirely of * characters that the number formatter's collator says are * ignorable at the primary-order level. false otherwise. */ private boolean allIgnorable(String str) { // if the string is empty, we can just return true if (str.length() == 0) { return true; } RbnfLenientScanner scanner = formatter.getLenientScanner(); if (scanner != null) { return scanner.allIgnorable(str); } return false; // if lenient parsing is turned on, walk through the string with // a collation element iterator and make sure each collation // element is 0 (ignorable) at the primary level // if (formatter.lenientParseEnabled()) { // {dlf} //return false; // RuleBasedCollator collator = (RuleBasedCollator)(formatter.getCollator()); // CollationElementIterator iter = collator.getCollationElementIterator(str); // int o = iter.next(); // while (o != CollationElementIterator.NULLORDER // && CollationElementIterator.primaryOrder(o) == 0) { // o = iter.next(); // } // return o == CollationElementIterator.NULLORDER; // if lenient parsing is turned off, there is no such thing as // an ignorable character: return true only if the string is empty // } else { // return false; // } } }